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Abstract

The shock jump conditions for the Euler equations in their primitive form are

derived by using generalized functions. The shock profiles for specific volume, speed,

and pressure are shown to be the same, however density has a different shock profile.

Careful study of the equations that govern the entropy shows that the inviscid entropy

profile has a local maximum within the shock layer. We demonstrate that because of

this phenomenon, the entropy propagation equation cannot be used as a conservation

law.
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1 Introduction

A consequence of the nonlinearity of the equations of motion is the steeping of compression

waves into a shock wave. Within the shock layer, the gradients of velocity and tempera-

ture become large, and irreversible thermodynamic processes caused by friction and heat

conduction become dominant. At high Reynolds numbers, the shock-layer thickness is of

the order of several mean free paths; for all practical purposes, the shock layer can be

represented as a mathematical abstraction that corresponds to a surface across which the

flow variables experience a sudden jump. Away from this discontinuity surface, viscous and

heat conduction effects are usually negligible and the inviscid equations of motion model

the flow well. Remarkably the information needed to account for the final outcome of the

irreversible processes that take place within the shock layer is contained in the inviscid

equations.

The study of shock waves is 150 years old. The jump conditions satisfied by the conserva-

tion of mass and momentum were discovered by Stokes [5] in the middle of the 19th century.

Stokes' excitement at making this discovery is evident in his paper: "These conclusions cer-

tainly seem sufficiently startling; yet a still more extraordinary result...the result, however.

is so strange..." The shock jump condition associated with the conservation of energy was

implicit in an investigation conducted by Rankine [7] in 1870; however a precise exposition

was not made until the work of Hugoniot [5] in 1889. The increase in entropy across a shock

was a more difficult concept to grasp. The leading fluid dynamicists in England (Stokes,

Kelvin, and Rayleigh) questioned the validity of the shock discontinuity because it violated

the conservation of entropy. The correct principles were not well understood, and did not

appear in their present form until around 1915.

Detailed studies of the viscous shock layer emerged several years later with the work of

Becker [1], who solved exactly the one-dimensional equations of a real fluid. In a related

study, Morduchow and Libby [6] found the exact entropy distribution across the shock

layer of a viscous heat-conducting gas. Morduchow and Libby observed, see Figure 1, that

the entropy, unlike the other flow variables that behave monotonically, increases through

the shock layer until it reaches a maximum at the center of the layer and then decreases

to its expected value on the other side of the shock. Morduchow and Libby explained

this phenomenon as follows: "It may at first sight appear that the recovery of mechanical

energy on the downstream side of the center of the wave thus indicated bv this solution

would violate the second law of thermodynamics... However, the second law applies to an

entire system-that is, to the end points and permits energy recovery in separate sections

thereof. The negative entropy here might also be interpreted as physical effects that are

not taken into account by the governing equations..."

Today, the shock jump conditions are obtained for the inviscid equations by casting them

in their integral conservation form. A brief derivation, based on this standard procedure, is

given section 2. However, the purpose of this work is to show that the shock jump conditions

can be derived from the primitive differential form of the equations. The genesis of the



of the analysispresentedherewascontainedin anunpublishedworkof Gino Moretti written
in the early 1970's. The significanceof this work is primarily that it demonstrateshow
to obtain the shockjump conditions for equationsthat cannot be cast in a conservation
integral. Similar work hasbeen presentedby Colombeauin reference2. An interesting
consequenceof this exposition is a better understandingof why the entropy equation does
not yield the proper jump.

2 Standard Shock Jump Analysis

The derivation of the jump conditions across a shock associated with the Euler equations

is welt known. See, for example reference 9. The derivation is included here so that it can

be contrasted with the "nonstandard" approach introduced in section 3.

The one-dimensional conservation laws for the inviscid flow of a perfect gas are

/ JR,+ (p_)x] dx = o

/ [(p + + =0

/ [(p e)t + (pu H)x] dx = 0

(1)

where p is the density, p is the pressure, E is the specific total energy, H is the specific

total enthalpy such that

H=E+P--
P

and u is the velocity of the gas. In the standard analysis for the shock jump conditions, we

weaken the usual smoothness requirements associated with the classical notion of a function

by introducing the concept of a weak or generalized solution. Basically, the integrand of

equation 1 is multiplied by a test function that is at least C 1 smooth and has compact

support. Then, we integrate over space and time in the neighborhood of the shock and use

integration by parts to move differentiation from the discontinuous fluid variables onto the

smooth test function. Thus let equation 1 be symbolically represented by

/ (u, + F,:)dx = 0 (2)

where

U = (p, pu, pE) T

and

F = (pu, pu 2 +p, puH) r

and let the initial conditions be given by

U(x, 0) = Uo(_)



Let o be a test function that is continuously differentiable and has compact support. Con-

sider the domain D around the shock E defined in the rectangle 0 < t < tl and a _< z < b.

see figure 2. Let _ be zero outside of D and on its boundary. Multiply the integrand of

equation 2 by 6, integrate over z and t, and use integration by parts to obtain

£ f, 0 + =0 (3)
We say that U is a weak solution of the initial value problem

U_ + Fx = 0

with initial data Uo if equation 3 holds for all differentiable test functions 0 with compact

support.

Let Dz be the subset of D on the left of E and D_ be the subset on the right of E as in

figure 2. Assume that U is differentiable everywhere except across E; hence, on Dt with

the divergence theorem, we find

f I (U_t+F_x)dxdt=l f [(U_),+(F4_)x]d,rdt=l o(-Udx+Fdt) (4)
JD t Jt>O aDl .It>_O JaD

and similarly for D_. Because 6 is zero on the boundary of D, the line integrals are only

nonzero along the shock E. Let the shock be defined by z(t) and Ut be the value of U on

the left of the shock; similarly, let _,_ be the value of U on the right side of the shock. Then

by using equation 4 and the equivalent expression on the right of E, we obtain

£ 6(-[Vlax+ [F]dt) = o

where [U] = [_ - 5_ and IF] = F(U_)- F(U_). Because 6 is arbitrary,

_[_:1: [F] (.5)

along E. where c = dx/dt is the speed of the shock. Equation (5) results in the following

Rankine-Hugoniot (R-H) jump conditions:

[p(_- _)] = 0
[p_(_- _)] + [p]= 0 (6)
[pE(_- _)1+ [p_] = 0

One solution to equation 6 corresponds to no mass flow across the discontinuity and leads

to the conditions across a slip line. The other solution results in jumps in pressure, density,

and velocity. After some manipulation, the R-H jumps can be expressed as

p_ + (pfi2)_ = p_ + (p_2)_ (7)

1 lt_ 2 _ 1 2 1 -2



where _ = u - c, a is the speed of sound, and 7 is the ratio of specific heats. The above

relations indicate that
_ _ pT - pl_,Tul= ---- (S)

P_ - Pl

which is known as Prandtl's relation,

-2--=
1tr

These results imply that the entropy

and

(7+ 1)p, + (7- X)p,
(7 - 1)p_ + (7 + 1)pl

jumps across a shock. Its jump is given by

P__2_ in p_
[S] = In p7 P-7

(9)

(10)

Although the entropy propagation equation can be expressed in the form of a conservation

law as

][(p S)t + (pu S'),:]dx = 0 (11)

it cannot be used to obtain the correct entropy jump across a shock wave.

3 Nonstandard Shock Jump Analysis

The shock jump conditions can be derived without relying on the integral conservation

laws. The importance of this method is threefold. First, this method provides a means for

determining the jump conditions for physical laws that cannot be expressed in conservation

form. Second, it will ultimately lead to an understanding of the nature of the entropy

structure across an inviscid shock. Thirdly, it may suggest how to derive shock-capturing

algorithms with proper jumps from the nonconservation form of the Euler equations.

Consider the following system of equations:

ut + uuz + vp_: = 0

pt + up_ + 7pu_: = 0

where v = 1/p. The reason for using v instead of p will become clear in section 4.

(12)

(13)
(14)

We look for solutions to v, u, and p of the form

v = v, + [v]H(()

p = p, + [p]L(_)

where for now we only require that.

H, K , L = { 0forx_-oClforx_oc

(15)

(16)

(17)

(18)



= x - ct, and [w] = wr - wl. The functions H, K, and L provide a description of the

shock profile or structure with end conditions u,t at .r = -oc and wT at x = ec, where w

stands-for v, u, and p.

Consider equation 12 and introduce equations 15 and 16:

- &]H'- (_,,+ [_,]H){_]I_"+ (4, + [_]I,')[,,]H' = 0 (19)

We can then rewrite equation 19 as

dH H t,t

dI; o + I, [,,](_+ I,')
(20)

where

By integrating equation 20 we obtain

_11--C
a - (21)

Ul

H = _] + b(a + K) (22)

where b is a constant of integration. Now, for x --+ -oc, both H and K

the constant of integration is

b- vl

and

H-

In the same way as for x --+ _, both H and K -+ 1,; therefore,

0,; therefore,

(23)

(24)

- 1 (2.5)

This last, relation, together with equation 21, gives (with fi = u- c)

ttr Pt
(26)

which is the R-H jump for the conservation of mass equation found in section 2 (equation

6). By using equations 24 and 25, we find that

H=K (27)

Now consider equation 13; if we introduce equations 15 - 17, then

- c[u]K' + (u_ + [u]K)[u]K' + (v, + [v]H)[p]L'= 0 (2s)



With equations 27 and 25, we can rewrite equation 28 as

dL [,_]_
d-K(+ [v][p]- 0 (29)

We can integrate

where d is a constant of integration.

Hence, for K + 1, L --+ 1,

This reduces to Prandtl's relation:

'g] ..

L + _1, =d (30)
As K _ 0, L _ 0, we can conclude that d = 0.

[_']_- 1 (31)
[v][p]

,L_z - p, - pt (32)
P_ - Pz

If we use equation 31 in equation 30, we get

If = L (33)

From the first two of equations 12 - 14, we find that the functions H, K, and L must be

the same to obtain solutions as in equations 15 - 17.

Now consider equation 14 and introduce equations 16 and 17:

[p](u,- c)L' + "/p,[u]K' + [u][pl(KL' +',/LK') = 0 (34)

However, we see from equation 33 that K = L such that

[p](u,- c)K' + 7p_[u]K' + [u][p](? + 1)KK' = 0 (35)

Let us integrate equation 35 from x = -ec to x = oc as

]o1 f0'{[p](u,-c)+ ,"/p,[u]} dig + [u][p]('7 + 1) KdK=O (36)

which can be reduced to the final R-H jump condition:

fit (_+ 1)p_ + ('7- 1)pt
= = (37)
u, (3, - 1)p, + (7 + 1)p,

This analysis has shown that if H = K = L (i.e., if the shock profiles for v,u, and p

are identical), then the full set of correct R-H jump conditions can be recovered from the

equations in primitive form.



4 Multiplication of Discontinuous Solutions

Consider equation 35 rewritten as

{[p](u,-c) + ",/p,[u] + [ul[p](? + 1)I'(} Ix" = 0 (38)

If K belongs to the set of C: functions, then the equation above only admits K = constant

as a solution. If K is allowed to be a discontinuous solution, then K' cannot be factorized

from equation 38. Here, we follow the mathematical construction of generalized functions

proposed by Colombeau in reference 2 and Colombeau and Le Roux in reference 3 . The

main advantage in using this construction is that most. of the operations admissible with

smooth functions can be defined for discontinuous functions, including differentiation. (See

appendix A.) We restrict our attention to the Heaviside function and its derivative, the

Dirac delta function.

The Heaviside function is such that

f 0 for z < 0
H(x) (39)lforx>0

The Dirac delta function (_(x)is 0 in [-:xD, 0[ U ]0, _c] and is such that

= 15(x)dx
OC

Let C_(_t) denote the set of all C _ functions on _ with compact support. Given Gl(x),

G2(x), and the test function _(z) C C_(_t), if

£ [a,(x)-a2(x)lq,(x)dx=O

for all _(x), then we say that Gl(x) and G2(x) are associated and write GI(x) "_ G2(x).

According to the definition above, G: _ G2 does not. imply that. G3 G1 "" G3 G2, where G3

is some other function. Consider, for example, H" (the nth power of the Heaviside function

H). We can show that H _ _ H, but. H _ H' is not. associated with H H'. In fact, we have

H n-1 H',--, %H' (40)
n

Note that if we replace the 0.ssociative symbol .-- in equation 40 with the equal sign, then

we obtain, for example, H H' 1 , 1 H'= :H and multiplication by H yields H 2 H = :H . Now
1 , 11/4, which is absurd.by substituting an equal sign into the equation we get 5H = ::_,

In conclusion, if we replace the equal sign in equation 35 with the symbol -,_ then the

subsequent, integration is fully justified.

In another example, we present a case in which the Heaviside functions describing the shock

are not. equal because of their behavior at. 0. Consider the mass conservation equation

pt + pu_ + up_ = 0 (41)



If we seek a solution for p of the form

p = pl + [p]I(_) (42)

then by using the same procedure above one obtains

a+l
I - K (43)

a+K

where a is given by equation 21. Equation 43 is significant because it shows that the

microscopic behavior of the Heaviside function that describes the p jump is not the same

as that for p or u.

5 Entropy Structure in a Shock Wave

As pointed out in section 2, although a "conservation law" can be written for entropy, this

law does not lead to the correct jump. Although this fact is well known, the reason why

is not well understood. In this section, we show that the shock profile that corresponds to

the entropy cannot be represented by a Heaviside function; hence, the entropy propagation

equation does not yield the correct jumps.

Consider equations 28 and 34. Multiply equation 28 by 7 and then divide by v; divide

equation 34 by p and add the two equations. We obtain the following by simpli_'ing:

_(p, + [p]L)[vlH' + (v, + [vlH)[plL'= 0

1
Because H = L we have H'L _ HL' _ _H _, and we get the R-H jump

vT [pz('_ - 1) +pT(7+ 1)1 = [vt(p_(7- 1) ,4,pt(7,4, 1)]

This shows that the equation

pt+?v !+u +'Yv =0
p v

has a valid jump. However equation 46 may be rewritten as

St + u Sx =0

because dS = dp/p + 2 dv/v. Now we look for a solution for S of the form

where T is a Heaviside function.

then we get

{-c T' + (ut -4- [u] K) T'} [S] = 0

(44)

(45)

(46)

(47)

S = S,-4-[S] T({) (48)

If we substitute equations 48 and 16 into equation 47,

(49)



either the expression within the braces must be 0 or the jump [S] must be 0. In general,

because no relation exists between T and K, the expression within the braces is not 0,

hence,-we conclude that. equation 49 gives the wrong jump, namely [S] = 0. In actuality,

the problem lies elsewhere. In going from equation 46 to 47, we have gone from an equation

with two jumps [2] and [v] to an equation with a single jump [S]. By combining the two

equations, we have lost some information: furthermore the assumption that the solution

can be expressed as in equation 48 is incorrect, which will be shown below.

dS dS

dH

Because the jump [2] is

Consider the following. Without loss of generality, let t,l = 1 and pl = 1 and take ,-qt as the

reference state for entropy'. Because S by definition is

S = lnp + 71nv (50)

we obtain, given equations 15 and 17 and the fact that L = H,

- -- H'= (1 + [t,]H) "v-1 {(')' q- 1)[2][vlH + [2] + "?[v]} H' (51)
pv'*

27[ ,1
[2]= -(7 + 1)[,,]+ 2 (52)

we can obtain the following by substituting and simplifying:

d,_q {1 + [v]H}'-' (1 - 2H) 7(7 + 1)[v][v] H' (53)
d-7= + + 2

This equation shows that dS/d_ ,,, 0 because (1 - 2H)H' ,-, 0 see equation 40; hence, S

has a maximum at the origin, which is confirmed by a study of the second derivative. As a

result, we conclude that S cannot be described by a simple Heaviside function but rather

by the sum of two Heaviside functions

S = ,-ql+ (S* - Sz)T(_) + (& - S')N(_) (54)

where S" is the value of S at the maximum. (See figure 3.) The figure shows clear that by

using a single equation such as equation 47 for the entropy, we cannot determine the two

jumps that actually represent the structure of the entropy at the shock. A more technical

proof is given in appendix B.

6 Conclusions

The shock jump conditions for the Euler equations in thier primitive form were derived

using generalized functions. It was shown that the structure of the shock profile is not

tile same for all variables. A study of the entropy propagation equation showed that if

the shock structure for the entropy is represesnted by a single Heaviside function, then the

wrong entropy jump is obtained. It. was then shown that the proper representation of the

entropy profile requires two Heaviside functions, but. not. all the information required to

specify this profile can be obtained from the entropy propagation equation.
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Appendix

A Some Definitions About Generalized Functions

Here we briefly discuss generalized functions. For more details on this subject, see references

8 and 4.

A test function cb(x) exists such that

1. ¢(z)is Ca.

2. 6(x) has a compact support (i.e., ¢(x) vanishes outside of some compact interval

[a,b]).

Furthermore, a sequence (_n(x) of test functions converges to 0 if

1. for each k, the sequence of the kth derivative ¢Ik)(x), ¢_k)(x),... converges uniformly

to 0.

2. every ¢,_(z) vanishes outside a given interval [a,b].

A generalized function T is a mapping from the set 7? of all test functions into the real or

complex numbers such that if < .,. > is the internal product operator, then we have

1. <T, a6(x)+b_,(x)>=a <T,(b(x)>+b <T,g,(x)>

2. if 6.(x) converges to 0 in the manner defined above, then < T, bn(x) > converges to

0.

Generalized functions are useful because their derivatives are always well defined. In fact,

we have the following definition

< T',_ >= - < T,o' >

B Entropy Structure Proof

Consider equation 50 substitute equations 12 and 14. Because H = L, we have

S = In(1 + [plH)+ _,ln (1 + [vlU)

The equation above can be written as

S = ln(pT)F + _ In (vT) G

11



where F and G are two Heaviside functions defined as

F= ln(1 + [p]H) G = ln(1 + [v]H)
In (pr) In (vr)

We show now that F ,-, G, although they are not identical in the sense that FH' is not

associated with GH'. We take a test function ¢(x) (defined in appendix A) and compute

the following integrals:

F ¢(x)dx = ln(1 + [p]H) ¢(x)dx = ¢(x)dx
_o In (p_)

L L /0G¢(x)dx = _o ln(1 + [v]H) ¢(x)dx = ¢(x)dx
_o In (v_)

from which we conclude that F -,_ G in accordance with the definition of association. To

verify whether FH' ,,, GH', we have

j_=_ f0_ln(1 + [plH) dH= 1+ 1 1oo F H'dx - in (Pr) [p] in (Pr)

lln(l+[v]H) dH=l+
GH'dx In (v_) [v] In (Vr)

Thus, we conclude that FH _ and GH' are not associated. Therefore, F and G must be

considered as two locallv different Heaviside functions, although they are associated.

12
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